

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical Engineering)

8EE4-11: HVDC TRANSMISSION SYSTEM

Credit: 3 Max. Marks: 150(IA:30, ET 3L+0T+0P End Term Exam: 3		TE:120) 3 Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	dc Transmission Technology: Comparison of AC and dc Transmission (Economics, Technical Performance and Reliability). Application of DC Transmission. Types of HVdc Systems. Components of a HVdc system. Line Commutated Converter and Voltage Source Converter based sys- tems.	04
3	Analysis of Line Commutated and Voltage Source Converters: Line Commutated Converters (LCCs): Six pulse converter, Analysis neglect- ing commutation overlap, harmonics, Twelve Pulse Converters. Inverter Operation. Effect of Commutation Overlap. Expressions for average dc voltage, AC current and reactive power absorbed by the converters. Ef- fect of Commutation Failure, Misfire and Current Extinction in LCC links. Voltage Source Converters (VSCs): Two and Three-level VSCs. PWM schemes: Selective Harmonic Elimination, Sinusoidal Pulse Width Modulation. Analysis of a six pulse converter. Equations in the rotating frame. Real and Reactive power control using a VSC.	10
4	Control of HVdc Converters: Principles of Link Control in a LCCHVdc system. Control Hierarchy, Firing Angle Controls – Phase-Locked Loop, Current and Extinction Angle Control, Starting and Stopping of a Link. Higher level Controllers Power control, Frequency Control, Stability Controllers. Reactive Power Control. Principles of Link Control in a VSC HVdc system: Power flow and dc Voltage Control. Reactive Power Con- trol/AC voltage regulation	10
5	Components of HVdc systems: Smoothing Reactors, Reactive Power Sources and Filters in LCC HVdc systems DC line: Corona Effects. In- sulators, Transient Over-voltages. dc line faults in LCC systems. dc line faults in VSC systems. dc breakers. Monopolar Operation. Ground Electrodes	08
6	Stability Enhancement using HVdc Control: Basic Concepts: Power System Angular, Voltage and Frequency Stability. Power Modulation: basic principles – synchronous and asynchronous links. Voltage Stability Problem in AC/dc systems.	04
7	MTdc Links: Multi-Terminal and Multi-Infeed Systems. Series and Parallel MTdc systems using LCCs. MTdc systems using VSCs. Modern Trends in HVdcTechnology. Intro- duction to Modular Multi-level Converters	04
	TOTAL	
	Office of Dean Academic	Affairs

Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. (EE) for students admitted in Session 2017-18 onwards Page 13

Text/Reference Books	
1	K. R. Padiyar, "HVDC Power Transmission Systems", New Age International
	Publishers, 2011.
2	J. Arrillaga, "High Voltage Direct Current Transmission", Peter Peregrinus Ltd.,
	1983.
3	E. W. Kimbark, "Direct Current Transmission", Vol.1, Wiley-Interscience, 1971.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical Engineering)

8EE4-12: Line-Commutated and Active PWM Rectifiers

Cred	11: 3 Max. Marks: 150(IA:30, E'	re:120)
3L+OT+OP End Term Exam: 3 Hor		B Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Diode rectifiers with passive filtering	06
	Half-wave diode rectifier with RL and RC loads; 1-phase full-wave di-	
	ode rectifier with L, C and LC filter; 3-phase diode rectifier with L, C	
	and LC filter; continuous and discontinuous conduction, input cur-	
	rent waveshape, effect of source inductance; commutation overlap.	
3	Thyristor rectifiers with passive filtering	06
	Half-wave thyristor rectifier with RL and RC loads; 1-phase thyristor	
	rectifier with L and LC filter; 3-phase thyristor rectifier with L and LC	
	filter; continuous and discontinuous conduction, input current wave-	
	shape.	
4	Multi-Pulse converter	06
	Review of transformer phase shifting, generation of 6-phase ac voltage	
	from 3-phase ac, 6- pulse converter and 12-pulse converters with in-	
	ductive loads, steady state analysis, commutation overlap, notches	
	during commutation.	
5	Single-phase ac-dc single-switch boost converter	06
	Review of dc-dc boost converter, power circuit of single-switch ac-dc	
	converter, steady state analysis, unity power factor operation, closed-	
	loop control structure.	
6	Ac-dc bidirectional boost converter	06
	Review of 1-phase inverter and 3-phase inverter, power circuits of 1-	
	phase and 3-phase ac-dc boost converter, steady state analysis, oper-	
	ation at leading, lagging and unity power factors. Rectification and	
	regenerating modes. Phasor diagrams, closed-loop control structure.	
7	Isolated single-phase ac-dc flyback converter	10
	Dc-dc flyback converter, output voltage as a function of duty ratio	
	and transformer turns ratio. Power circuit of ac-dc flyback converter,	
	steady state analysis, unity power factor operation, closed loop con-	
	trol structure.	
	TOTAL	

Text/Reference Books	
1	G. De, "Principles of Thyristorised Converters", Oxford & IBH Publishing Co,
	1988.
2	J.G. Kassakian, M. F. Schlecht and G. C. Verghese, "Principles of Power Elec-
	tronics", AddisonWesley, 1991.
3	L. Umanand, "Power Electronics: Essentials and Applications", Wiley India,
	2009.
4	N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications
	and Design", John Wiley & Sons, 2007.
5	R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics",
	Springer Science & Business Media, 2001.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical Engineering)

8EE4-13: ADVANCED ELECTRIC DRIVES

Credit: 2 Max. Marks: 100(IA:20, ETE:80		
2L+0T+0P End Term Exam: 2 Ho		Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Power Converters for AC drives: PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three level inverter, Different topologies, SVM for 3 level inverter.	06
	Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge as a 4-Q drive.	
3	Induction motor drives: Different transformations and reference frame theory, modeling of induction machines, voltage fed inverter control-v/f control, vector control, direct torque and flux control(DTC).	06
4	Synchronous motor drives: Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fed synchronous motor drives.	04
5	Permanent magnet motor drives: Introduction to various PM mo- tors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM	04
6	Switched reluctance motor drives: Evolution of switched reluctance motors, various topologies for SRM drives, comparison. Closed loop speed and torque control of SRM.	03
7	DSP based motion control: Use of DSPs in motion control, various DSPs available, realization of some basic blocks in DSP for implementation of DSP based motion control	04
	IOTAL	

Text/Reference Books	
1	B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education,
	Asia, 2003.
2	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery
	and Drive Systems", John Wiley & Sons, 2013.
3	H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Con-
	trol", CRC press, 2003.
4	R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor
	Drives", CRC Press, 2009.

8EE4-21 Energy Systems Lab

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. (EE) for students admitted in Session 2017-18 onwards Page 17

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. (Electrical Engineering)

Crea	lit: 2 Max. Marks: 100(IA:60, ETE:40)
OL+OT+3P End Term Exam: 3 Hours	
SN	Contents
1	V-I characteristics of solar panels at various levels of insolation.
2	Experiment of solar Charge controller, PWM, MPPT with boost converter and algorithms.
3	Experiment on Shadowing effect and diode based solution in1kWpSolar PV System.
4	Study of wind turbine generators with DC generators, DFIG, PMSG etc.
5	Performance Study of Solar Flat Plate Thermal Collector Operation with Varia-
	tion in Mass Flow Rate and Level of Radiation.
6	Characterization of Various PV Modules Using large area Sun Simulator.
7	Study of micro-hydel pumped storage system.
8	Experiment on Fuel Cell and its operation.
9	Study of 100 kW or higher solar PV plant.
10	Study different components of Micro Grid.
11	To design and simulate hybrid wind-solar power generation system using si-
	mulation software.
12	Experiment on Performance Assessment of Hybrid (Solar-Wind- Battery) Pow-
	er System.
13	Simulation study on Intelligent Controllers for on-grid and off-grid Hybrid
	Power Systems.

Office of Dean Academic Affairs Rajasthan Technical University, Kota